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LETIER TO THE EDITOR 

Anomalous crossover behaviours in the two-component 
deterministic percolation model 

P Y Tong and K W Yu 
Department of Physics, Chinese University of Hong Kong, Shatin, New Territories, 
Hang Kong 
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Abstract. We have investigated the current distribution in the two-component deterministic 
percolation model in which the ratio h of poor to good conductance is regarded as a small 
parameter It is found that the minimum current Imin(h) scales anomalously with h: 
I,j.(h)/l,j~(l)=eap(-constant(ln h)')H(hL'), where L i s  the size ofthe network, H a 
function describing the crossover from fractal to homogeneous behaviours and 6 the 
crossover exponent. The exponential prefactor is quite similar to the behaviour of left-sided 
multifractality in diffusion limited aggregations. It is found that coincides with the 
crossover exponent for all multifractal moments of the current distribution. 

Recently there has been an increased interest in the study of the current distribution 
in a random resistor network (RRN). It is proposed that different moments of the 
current distribution scale with an infinite number of independent exponents [I]. The 
problem has been extended to the two-component RRN which is composed of good 
conductors with impedance X at a concentration p and poor conductors with imped- 
ance Y at a concentration 1 -p .  The impedance ratio h = X/ Y is regarded as a small , 

parameter and one focuses on how the moments scale within fractal ( h  = 0) and 
homogeneous ( h  = 1) regions. For such a network, the question of whether there are 
an infinite number of exponents describing the crossover from fractal to homogeneous 
behaviours has attracted current interest [2-41. However, the study of the scaling of 
the negative moments is lacking. 

The negative moments of the current distribution are dominated by the minimum 
current of the network, which is in general very difficult to determine accurately in 
numerical simulations. In this letter, we study a deterministic percolation model (DPM) 
[5,63 which is constructed iterately so that one can obtain the complete set of currents 
exactly. It is quite surprising to find that the minimum current I,,,;"(h) scales 
anomalously with h:  

I f i n ( h ) / I f i n ( l )  = exp(-constant(ln h)*)H(hL+)  (1) 
where L is the size of the network, H a function describing the crossover behaviour 
and q5 the crossover exponent. The exponential prefactor is quite similar to the 
behaviour of left-sided multifractality in diffusion limited aggregations [7] in that the 
minimum growth probability scales with the size L of the aggregate exponentially as 
exp[-c(ln L)'] but we should emphasize here that the analogue is in a completely 
different context. It is also interesting to find that 4 coincides with the crossover 
exponent for all multifractal moments of the current distribution. The present 
exp[-c(ln h)'] behaviour will be conlirmed in real two-component RRNS [8]. 
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The deterministic percolation model (DPM) is an extension of the fractal lattice 
which was originally proposed by Kirkpatrick [SI to model the percolation backbone. 
Here we follow Clerc et al [a] to extend the constructions to the two-component RRN. 
Starting with a filled square, one divides it into four equal squares and replaces the 
right upper quadrant by an empty square to obtain the first generation. The lateral 
size is increased by a factor of two. The second generation is obtained from the first 
generation by replacing each square by two types of generators. The generator for a 
filled square is exactly the same as the first generation but the generator for an empty 
square is complementary to that of the filled square, i.e. the upper right quadrant is 
filled while the rest are empty. The process is repeated ad infinitum to obtain the DPM. 

It is interesting to find that the DPM consists of finite clusters and dangling bonds 
as well as a connected cluster for conduction, which mimics a real percolating network 
Moreover, although the model thus constructed has a filling factorf=z we adopt in 
subsequent studies an arbitrary filling factor f(f <f< 1). An equivalent circuit model 
[6] is shown in figure l(o) in that the good conducting bond at the right is a parallel 
combination of (4f-2) good conductors while that at the left has 4(1-f) poor 
conductors. Similar notations are used in figure l (b )  to model the poor conducting 
bonds. 

Figure I. The renormalization process of DPM: (U) good conductor-rgood condudor, 
( b )  poor conductor+ poor conductor. 

For completeness, we summarize the salient geometrical properties of the DPM as 
follows. The total number of circuit elements N. at the nth generation is 4" with a 
lateral size L=2". The fractal dimension is therefore two. The number of good 
conductors is 

while the number of poor conductors is 

As the size increases, these numbers converge to fNn; the fraction of good conductors 
approaches the percolation threshold of a two-dimensional bond percolation model 

Here for the purpose of establishing notations, we follow Clerc et a l [ 6 ]  to discuss 
briefly the scaling properties of the impedance of the DPM. From figure 1, the impedance 
of the good conductor X. and that of the poor conductor Y, at the nth generation 
are related by the following recursion relations 

N,=4N.[1+(2f-l)"] 

NI =!N.[l-(Zf-l)"]. 

(Pc=f). 
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Note that the roles of X ,  and Y, are interchanged in equations (2n) and (26). If we 
denote h. = X./ Y,, we arrive at a recursion relation for h,, 

hn = S(h,-J (3) 
where S ( h )  is a one-parameter iterated map, 

The solutions of h = S ( h )  give the fixed points for the iterated map, here we have four 
b e d  points at h = -l,O, 1,m. Stability analysis shows that h = 1 is the only stable 
fixed point while the others are unstable. In the vicinity of the fixed point, we defined 
the fixed point multiplier 

At h=-l,A-,=(8fZ-12f+5)/(2f-1)(4f-3); h=O, A0=2f/(2f-l); h = l , A i =  
2f - 1; h =m, A,= 2f/(2f- 1). Since A, is less than unity, we conclude that h = 1 is a 
stable fixed point. The unstable fixed point h = 0 corresponds to the interesting cases 
of the random resistor network limit in which the poor conductor has no finite 
conductance and the random superconducting network limit in which the good conduc- 
tor has an infinite conductance. We are interested in the scaling region with a small 
but finite initial value ha (in the vicinity of the h = O  unstable fixed point) in a finite 
network so that the subsequent %ow to the h = 1 fixed point leads to a crossover from 
the fractal to the homogeneous behaviour. 

Let us investigate the scaling behaviour of impedance at h = 0. We define a function 
~ ( h )  such that 

x"=X.-,rp(h.-i)=Xorp(h.-i). . . (P(hh(hi)P(ho) ( 6 )  
where 4 

(1 - f ) h + f  
rpp(h)=2(1 -f)h+(2f- 1 ) '  (7) 

For ho=O, it follows that h i = h z =  ...= h.-,=O and rp(h.)=rp(O) for all n. Hence, 
X.=Xo[rp(0)]". If we write X.=XoL"", where L=2" being the size of the network, 
we identify the conductivity exponent f l u  = In rp(O)/ln 2. Due to the recursive nature 
of the DPM, we are able to derive a homogeneous relation 

X" =XoL""H,(hoLQ) (8) 
where q5 = (s+ t ) / u  is the crossover exponent and s/u = [In Ao-ln rp(O)]/ln 2 is the 
superconducting exponent [6] .  We have computed X,, numerically using equation (6) 
and plotted X.L"y against hOL"+')'" in a log-log plot with various initial values of ha 
and network sizes L. The data all lie on a universal curve, thus confirming the 
homogeneous relation equation (8). 

Next we find that in fact all currents scale with the same crossover exponent 
q5 = (s+ 1 ) /  U. From figure 2 and by using elementary circuit equations, one can deter- 
mine the complete set of currents in the good conductor 

1.1 =(4f-2)(rp(hn)-?)In+i 

In2=4(1 -f)hArp(h.) -;)I.+, (9 )  
I = I  =I "3 n4 2 L C I .  
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The maximum current is located at the first bond of the good conductors (see figure 
] ( a )  and figure 2) at any generation. The maximum current at the nth generation is 
given by 

1~~~=(4f-Z)"((p(h.- ,)-l)((p(h.-2) -4). . . ( d h o )  -;)In. 
Since (p(O)-$)=(4f-Z)-', one finds 

where x = AGho = hoLm is the relevant scaling variable. We have plotted the against 
hoL', with different ha and size L, and they all lie on a universal curve HmaX(x). 

The aim of the present study is to extract the minimum curreg and to examine its 
anomalous crossover behaviour. The minimum current of the network is located at the 
6rst bond of the poor conductors (see figure I(b) and figure 2) at any generation. 
Similar to equation (9), we can easily obtain the complete set of current distribution 
in the poor conductor, 
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Shifting x to AOX, one can show that Fo(Aox) = S(Fo(x)) .  Hence we obtain an asymptotic 
expansion for Fo(x) at small h: 

4f2-5f+2 
Fo(x)  = x -  ( ) x2+. . , . 

Z f  (1  -f 1 

again x = Agh0 = hoL" is the relevant scaling variable. One can readily see that if we 
let h, = I and thus p(&) = p(l) = 1 for all m, then 

Jgc1)(l)=(4f-2)"4(1- f)(l/Z)"+'. 

We can therefore normalize 1:;') by Ig;')(l) 

In order to extract the scaling and the crossover properties of the minimum current 
from equation (15), let us consider a small initial value of ho and a large generation 
R Most of the terms in the product involve small values of arguments of x/A:-'" so 
that their values are small except for the last few terms which are close to unity. There 
exists a typical value of n = n* beyond which x'=x/h,"-"*= 1 and that the product 
of the terms for n > n* is essentially unity. We can therefore consider the product from 
m = 1 to n*. The value of n* which depends on the initial value of ho can be estimated 
as follows. With h..- 1 or A\;;'$== 1, we have ~ * = = - l n  ho/ln io. For small h+O, then 
q ( h ) +  p(O), h,/h,-, + Ao.  Since A0=2q(0 ) ,  Ikc ' ) (O)+O,  we have to use theErst-order 
expansions of p ( h )  and Fo(x) near h+O and x+O respectively. 

and 

4f2-5f+2 
FO(X) =x- ( ) x2+. . . . 

Z f  (1 -f) 
We obtain the minimum current 

"'("'+')/2H(A"h ) r : ; l ) ( h o ) / r g P ( i )  = A; 0 0  

which is dominated by the factor A;"*("*+')'* . Putting in the value of n*= -In ho/ln Ao, 
we arrive at the desired result [see equation (l)] 

I:,~1)(ho)/I~2')(l) =exp(-(In hO)*/2ln Ao)H(Agho). (16) 
In figure 3, we plot I ~ ' ) ( h o ) / J g ~ l ) ( l )  as a function of hoLm in a log-log plot, we 
can see that as n increases the curve crosses over from a rapidly decreasing region 
towards a constant. The crossover occurs clearly at n = n*(ho) = -In ho/ln Ao. In figure 
4, we plot the rescaled minimum current ( I $ ' ~ ' ) ( h o ) / I ~ ~ ' ) ( l ) )  exp(-(In ho)2/2 In A,) 
against hoLm, the collapse of all data on a universal curve is evident. In fact, the 
dependence of the minimum current on h is very similar to that of the minimum growth 
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Figure 3. Log-log plot of the normalized minimum cumnt I,,,,n(h)/Imin(l) as a function 
of h,Ld far h,= 1, lo-', lo-' and n from 1 to 20 and far h,= 10-''and n from 
1 to 30. The filling factor is f = t .  

LOg(hh..I 

Ffgore4. Log-log plot of the rescaled minimum currmt ( I ,"~(h) f I , , ,~~( l ) ) (A~"' (" '* 'J! l  )as 
a function o f  hoL4 The same set of data is used as in figure 3. 
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probability of a diffusion limited aggregation on the size, both exhibiting decay faster 
than any power law. However, the present study is in a completely different context 
from the behaviour of left-sided multifractality in diffusion limited aggregations. 

A few comments on our model are in order. First of all, let us study the generality 
of the results. We have performed similar calculations in the two-component diamond 
lattice [9] ,  which is the exact dual lattice of DPM. We also performed numerical 
simulations on the two-dimensional random resistor networks. To this end, we should 
remark that the minimum current is extremely difficult to determine accurately in 
numerical simulations. We instead determine the most probable current which can be 
shown to scale in the same way as the minimum current does (see below). We obtained 
the same exp[-c(Ln h)'] behaviour [SI. Perhaps one might suspect that the index '2' 
could be the fractal dimension of the underlying lattice. We did similar calculations 
in the de Arcangelis-Redner-Coniglio (ARC) hierarchical lattice [l]. The same 
exp[-c(ln h)'] is obtained although the ARC lattice has a non-integral dimension. 

Secondly, we develop the multifractal aspect of the model, i.e. we compute the left 
side of thef(a)  spectrum. We consider the partition function X i  I f 9  = L-"9' according 
to multifractal analysis [lo]. For h = 1, we End T ( q )  = 2-q, which indicates a constant- 
gap scaling. The f ( a )  spectrum is a single point at a = 1 and f =  2. For h = 0, we 
recover the deterministic fractal lattice of [SJ. When h+0, the maximum current 
Imax + 1. For q 3 0 and for sufficiently large size L = 2", the partition function scales as 

13q=(1+2-(29-1))". 
i 

We obtain T ( q )  = In[ 1 + 2-(29-1)]/h 2. Tremblay et al [ 111 did Monte Carlo simulations 
for integral values of q = 1, 2 and 3 only. We fmd ~ ( 1 )  = -0.585, ~ ( 2 )  = -0.167 and 
~ ( 3 )  = -0,044, in qualitative agreements with the results ~ ( 1 )  = -0.98, r(2) = -0.82 and 
7(3)=-0.77 of Tremblay et al [ I l l ;  in particular the inequality I T ( q ) l > l T ( q + l ) l  is 
strictly obeyed. One should not be too surprised by such a discrepancy because 
deterministic fractal models can only capture qualitatively the scaling behaviour of 
percolation clusters. 

We have presented analytic calculations for the maximum and minimum currents 
only. It is also interesting to examine the size and conductance-ratio dependence of 
the current distribution. Due to the iterative nature of the model, we are able to find 
exact recursion relations for the current distribution. Here we brietly summarize our 
results and details will be presented elsewhere [SI. For extremely small h such that 
hL"<<l,wefindthat ~ ( a ) = e x p ( - A [ n - B ( l o g L f ' ] / ( l ~ g L ) ~ ] ] , w h e r e D ( a ) d a  isthe 
number of currents with a <-log Ii < a + d a ;  Xi is the current in bond i and A, B are 
constants. The current distribution is well approximated by a Gaussian with the mean 
varying with size as (log L)' while the variance as (log L)'. As a result, both the most 
probable current and the minimum current scale with L as exp[-c(log L)']. In the 
opposite limit hLQ >> 1, the current distribution reduces to the trivial form of a one- 
component lattice, i.e. it remains narrow. 

In conclusion, we have investigated the crossover behaviour of the minimum current 
in the deterministic percolation model. It is found that the minimum current Imlo(h) 
scales anomalously with h :  

Imjn(h)/Imjn(l) = exp(-constant(1n h)')H(hL"). 

The exponential prefactor is quite similar but in a completely different context from 
the behaviour of left-sided multifractality in diffusion-limited aggregations. As we End 
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that all currents scale with the same crossover exponent, we conclude that all multifrao 
tal moments of the current distribution scale with a single crossover exponent + = 
(s + t)/ v. We suggest numerical simulations in real percolation system be done to check 
our scaling predictions [SI. 
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